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LElTER TO THE EDITOR 

Normalization and statistical noise level in the normalized 
autocorrelation function. Compensated normalization* 

Zbigniew Kojrot 
Institute of Experimental Physics, University of Gdansk, Poland 

Received 31 October 1990 

Abstract. The use of large delay times in modern correlation experiments must be supported 
by an appropriate normalization scheme. The already available symmetric normalization 
does not eliminate all those statistical mors from a measured intensity autocorrelation 
function which can be eliminated with the help of a normalization procedure. A new kind 
of 'compensated normalization' is presented. 

The symmetric normalization of the intensity autocorrelation function, suggested by 
Schatzel et a/ [ 13, diminishes statistical errors in a measured autocorrelation function 
in comparison with the standard, asymmetric normalization. There exists a different 
kind of normalization that leads to an even greater noise decrease. The formulation 
of the problem proposed by Schatzel et al [l]  is generally valid (not only for large 
sample times) and allows us to see more details that are important in correlation 
measurements. Based on papers [1-3] one can write the following definitions and 
relations (notation used in these papers): 

n, = A( 1 + 8,) (photon counting signal at time tm [l]) (1)  

x : = ( S 0 6 k )  (square of expected field correlations [2]) (9 
Ek,,= E y + & ; q  (reduced error fluctuations [3]) ( 6 )  

ek = SE, f E*,, (total error fluctuations [3]) (7) 

& I = -  1 n,n,+, = ~ ' ( 1  +x:  + e k )  (8) 
1 N  

N m = t  
(see PI) 

1 " 

6=- n,=A(l+fSE,) [1,2] 
N m - l  
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= S E , + ~ ( S B , ) ~ = S E ,  (baseline error [ 3 ] )  

;I?, - A2 

A2 
SEk =- 

+ $ E - E ; ~  = SE- + &[In (symmetrized baseline error) (12) 

(SE.) = ( E ; " )  =(.siq) = 0 (SE)=O (6Ek) = 0. ( 1 3 )  

where 

From (8 ) - (10 )  we obtain the unbiased, normalized estimator of intensity 
correlations [ 4 ]  

tOk = 6k2' /A2 = { l  +,&+{SE8 + eiq+ E:" )  ( 1 4 )  

and two biased estimators: the standard, asymmetrically normalized estimator [2 ,5]  

= { I  + x : ) + { E ; ~ -  E;"& - SE&) 

+  SE,)^^: - S E . & ; ~ - - ~ S E . E ~  -$(se,)' 
+iSB & t i "  2 li" 2 2 19 li" 

r k X k + ( & k  ) X k - E k  E k  1. 
Equation ( 1 5 )  is identical to (13) from [ 3 ]  after using definition ( 1 1 ) .  

Taking into account the relation (equations ( 9 )  and (10)) 

6, - n* = EE"" k (17) 

one can introduce a new kind of 'compensated normalization' that gives us the third 
biased estimator 

t y '  = [ d y -  (& - fi)n^]/n^2 

- I + x :  + SE. + E ; P - ; S E  r k  clin 
- 

1+SE.+$(SE,)2  
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Three kinds of terms are grouped in expressions (14), (15), (16) and (18) in { }brackets: 
expected values, statistical errors of first order of magnitude and statistical errors of 
second order of magnitude (bias terms), respectively (terms less than those of second 
order of magnitude are neglected). One can say that each normalization procedure 
removes a part of error contributions of first order of magnitude from an unbiased 
autocorrelation estimator (8) and simultaneously adds to it errors of second order of 
magnitude (bias terms). The quality of the normalization procedure can then be 
characterized by the degree of removing of undesirable terms from a measured 
autocorrelation function. We have from (15), (16) and (18): 

( I )  The standard, asymmetric normalization removes the baseline error [3]. 
(2) The symmetric normalization removes the baseline error and linear error 

contributions for delay times much larger than a coherence time. This has been predicted 
and experimentally checked by Schatzel er a/ [ 11 (although some terms of order O(S3) ,  
which contribute to the error of first order of magnitude and to the bias, have not been 
taken into account). 

(3) The compensated normalization removes baseline error and linear error contri- 
butions in the whole delay time range. 

(4) The term -SE&X: is insignificant in size distribution or linewidth determination 

Equations (15), (16) and (18) can be rewritten as 
PI .  

~,-]=(dp)-~Z)/n12=~~)/-2 M n  

~ ~ ) - l = ( ~ ~ Z l - n ^ ~ ~ ) / ( ~ n ^ ~ ) =  @ L / ( f i f i k )  

&)-. 1 = ( & -  n^&)/$ = &?/n^2 

= A[{x:)+{&tq+ E ~ } - { ~ ( S E , ) ~ } ]  (19) 

= A,[{,y:)+{ - [a( 6 B , ) 2 + $ 5 E , ~ p } ]  (20) 

A [ [ X : } + ( E i q }  -{a( SE.)2+fSE,~~")]  (21) 

A = 1/(1+ SE, ++(SE,) ' )  (22) 

A, = l / ( l+SE,  + ~ ~ " + + ( S B ~ ) ~ + t s E . & l l " ) .  (23) 

where 

Here &!, is the so-called 'modified estimator' [6], and @A we call 'compensated 
estimator'. 

Normalization is usually understood as a division by a number. Such an action 
gives us a singularity of amplitude, field under a curve, etc. In size distribution or 
linewidth determination, however, this procedure i s  not necessary [31 and the only 
important procedure is to subtract a background from a measured autocorrelation 
function. On the other hand, a division by i2 is very useful because it allows us to 
keep the correlations in particular correlator channels on the same level-however the 
choice of this normalization number is arbitrary. From (20) we see that in the case of 
symmetric normalization the denominator (and also factor A,) is not a constant number 
and this causes the appearance of the term -&k",y: in (16).-This means that the error 
compensation resulting from the subtraction of n^& from GLZ1 is partially lost in this 
case: the error is overcompensated. Comparing (19) and (21) with (15) and (18) we 
see that the only important errors are those from (19) and (21), and in size distribution 
or linewidth determination it is enough to treat the final factor A in (19) and (21) as 
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an ordinary number which has no influence on the final result [3]. From (19) and (21) 
we also see that the normalization procedure for autocorrelation functions consists of 
the compensation and a typical normalization being the division by an ordinary number. 

There exists the need for a detailed discussion of the contribution of error term 
E!"  to the final statistical distortion of the measured autocorrelation function. From 
(2) we see that when k<< N (where k = T ~ /  T,, T, is the sample time and T* the delay 
time) this error term is of order N-l and therefore is much smaller than other error 
terms (2) and (4) which are of order N-i'2 [2-5,7]. This is a typical situation for 
correlators with linear delay time spacing, and this term does not contribute to variances 
and covariances calculated for statistical noise in autocorrelation function [2-5,7]. At 
multiple sample and delay times [6,8,9] we have a quite different situation and this 
condition is no longer valid (in this case we have for the last delay time T ~ ~ ~ :  k = N). 
A straightforward calculation gives us the standard deviation for this linear error 
contribution (31 

€:n) = ( k / ~ ) ~ ' ~ ~ ( 8 & )  

= 2 k'" N-l(  T,/ T, + 1/ ri)'" (24) 

where A = (nm/ T,). In figure 1 are plotted three experimental situations in a multiple 
tau correlator with three different relationships between the last delay time and a 
coherence time: T~~~ = T,, T , , , ~ ~  = lOT, and T,,, = lOOT,. The differences between 
standard, symmetric and compensated normalizations are evident. 

0 
X 

Figure 1. Three experimental situations in a multiple tau oxrelator with three different 
relationships between the last delay time and a coherence time: x,,, = 1 (a', a), xms. = 
IO (b, b) and x,,,., = 100 (c', c). a'. b', c': Relative linear error contributions e""(x) in the 
case of the standard normalization; a, b, c: the corresponding errors after using the 
symmetric normalization; d: autocorrelation function; x = TI T,. 

As can be concluded from figure 1, the compensated normalization is better than 
the symmetric one in these experimental cases (while using a 'multiple tau' correlator 
[l ,  6,8]) in which a measured delay time cannot be much longer than a coherence 
time, i.e. when a measurement time is limited or when a measured autocorrelation 
function has a long tail. 
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